# 8.3.py # 2017-01-15 # $Id: 8.3.py 1.1 2017/01/15 00:00:00 s Exp s $ import numpy as np from numpy import linalg as LA # input s1 = np.array([11.91, 18.37, 3.64, 24.37, 30.42, \ -1.45, 20.11, 9.28, 17.63, 15.71]) s2 = np.array([29.59, 15.25, 3.53, 17.67, 12.74, \ -2.56, 25.46, 6.92, 9.73, 25.09]) s3 = np.array([23.27, 19.47, -6.58, 15.08, 16.24, \ -15.05, 17.80, 18.82, 3.05, 16.94]) s4 = np.array([27.24, 17.05, 10.20, 20.26, 19.84, \ 1.51, 12.24, 16.12, 22.93, 3.49]) m = np.array([23.00, 17.54, 2.70, 19.34, 19.81, \ -4.39, 18.90, 12.78, 13.34, 15.31]) rf = np.array([ 6.20, 6.70, 6.40, 5.70, 5.90, \ 5.20, 4.90, 5.50, 6.10, 5.80]) # calculate s = np.vstack((s1, s2, s3, s4)) mean = np.mean(s, axis = 1) variance = np.var(s, axis = 1, ddof = 1) covariance = np.cov(s, ddof = 1) eigenvalue, eigenvector = LA.eig(covariance) eigenvector0 = eigenvector[:, 0:1] eigenvector0 = eigenvector0 /sum(eigenvector0) sumeigenvector0 = sum(eigenvector0) # output print('8.3.py') print('s1', s1) print('s2', s2) print('s3', s3) print('s4', s4) print('s\n', s) print('mean\n', np.around(mean, 2)) print('variance\n', np.around(variance, 2)) print('covariance matrix\n', np.around(covariance, 2)) print('eigenvalue\n', np.around(eigenvalue, 2)) print('eigenvector\n', np.around(eigenvector, 3)) print('eigenvector0\n', np.around(eigenvector0, 3)) print('sum of eigenvector0[k]\n', sumeigenvector0) # eof